中国·澳门新葡萄新京威尼斯(987-官方网站)-Ultra Platform

/ EN
13922884048

资讯中心

information centre
/
/

一文读懂氧化镓(第四代半导体)

发布时间:2023-02-27作者来源:澳门新葡萄新京威尼斯987浏览:5836


本篇行业研究由沃衍资本投研部出品
近来,氧化镓(Ga2O3)作为一种“超宽禁带半导体”材料,得到了持续关注。超宽禁带半导体也属于“第四代半导体”,与第三代半导体碳化硅(SiC)、氮化镓(GaN)相比,氧化镓的禁带宽度达到了4.9eV,高于碳化硅的3.2eV和氮化镓的3.39eV,更宽的禁带宽度意味着电子需要更多的能量从价带跃迁到导带,因此氧化镓具有耐高压、耐高温、大功率、抗辐照等特性。并且,在同等规格下,宽禁带材料可以制造die size更小、功率密度更高的器件,节省配套散热和晶圆面积,进一步降低成本。
2022年8月,美国商务部产业安全局(BIS)对第四代半导体材料氧化镓和金刚石实施出口管制,认为氧化镓的耐高压特性在[敏感词]领域的应用对美国国家安全至关重要。此后,氧化镓在全球科研与产业界引起了更广泛的重视。

01

氧化镓的性能应用和成本


1.1  第四代半导体材料
[敏感词]代半导体指硅(Si)、锗(Ge)等元素半导体材料;第二代半导体指砷化镓(GaAs)、磷化铟(InP)等具有较高迁移率的半导体材料;第三代半导体指碳化硅(SiC)、氮化镓(GaN)等宽禁带半导体材料;第四代半导体指氧化镓(Ga2O3)、金刚石(C)、氮化铝(AlN)等超宽禁带半导体材料,以及锑化镓(GaSb)、锑化铟(InSb)等超窄禁带半导体材料。
第四代超宽禁带材料在应用方面与第三代半导体材料有交叠,主要在功率器件领域有更突出的应用优势。第四代超窄禁带材料的电子容易被激发跃迁、迁移率高,主要应用于红外探测、激光器等领域。第四代半导体全部在我国科技部的“战略性电子材料”名单中,很多规格国外禁运、国内也禁止出口,是全球半导体技术争抢的高地。第四代半导体核心难点在材料制备,材料端的突破将获得极大的市场价值。

图片

图:按照禁带宽度排序的半导体材料

注:金刚石、氮化铝衬底/外延工艺难度大(气相法生长,每小时几微米,且尺寸仅毫米级)、成本高等问题,难进入功率器件领域。(Ref:H. Sheoran, et al., ACS Appl. Electron. Mater., 4, 2589, 2022)


1.2 氧化镓的晶体结构和性质
氧化镓有5种同素异形体,分别为α、β、γ、ε和δ。其中β-Ga2O3(β相氧化镓)最为稳定,当加热至一定高温时,其他亚稳态均转换为β相,在熔点1800℃时必为β相。目前产业化以β相氧化镓为主。
氧化镓材料性质:
  • 超宽禁带,在超高低温、强辐射等[敏感词]环境下性能稳定,并且对应深紫外吸收光谱,在日盲紫外探测器有应用。
  • 高击穿场强、高Baliga值,对应耐压高、损耗低,是高压高功率器件不可替代的明星材料。
注:由于日盲紫外器件主要使用氧化镓薄膜,本报告中的氧化镓特指单晶衬底,故主要讨论氧化镓在功率器件、射频器件等领域的应用。

图片


1.3  氧化镓:挑战碳化硅
氧化镓是宽禁带半导体中[敏感词]能够采用液相的熔体法生长的材料,并且硬度较低,材料生长和加工的成本均比碳化硅有优势,氧化镓将全面挑战碳化硅。
1. 氧化镓的功率性能好、损耗低
氧化镓的Baliga优值分别是GaN和SiC的四倍和十,导通特性好。氧化镓器件的功率损耗是SiC的1/7,也就是硅基器件的1/49。
2. 氧化镓的加工成本低
氧化镓的硬度比硅还软,因此加工难度较小,而SiC硬度高,加工成本极高。
3. 氧化镓的晶体品质好
氧化镓用液相的熔体法生长,位错(每平方厘米的缺陷个数)<102cm-2,而SiC用气相法生长,位错个数约105cm-2
4. 氧化镓的生长速度是SiC的100
氧化镓用液相的熔体法生长,每小时长10~30mm,每炉2天,而SiC用气相法生长,每小时长0.1~0.3mm,每炉7天。
5. 氧化镓晶圆的产线成本低,起量快
氧化镓的晶圆线与Si、GaN以及SiC的晶圆线相似度很高,转换的成本较低,有利于加速氧化镓的产业化进度。从日本经济新闻网报道的原文“Novel Crystal Technology在全球首次成功量产以新一代功率半导体材料氧化镓制成的100毫米晶圆,客户企业可以用支持100毫米晶圆的现有设备制造新一代产品,有效运用过去投资的老设备。”来看,氧化镓不像SiC需要特殊设备而必须新建产线,潜在可转换的产能已非常巨大。
1.4  氧化镓的应用领域:功率器件
氧化镓的四大机遇:
  • 单极替换双极:即MOSFET替换IGBT,新能源车及充电桩、特高压、快充、工业电源、电机控制等功率市场中,淘汰硅基IGBT已是必然,硅基GaN、SiC、Ga2O3是竞争材料。
  • 更加节能高效氧化镓功率器件能耗低,符合碳中和、碳达峰的战略。
  • 易大尺寸量产扩径、生产简单,芯片工艺易实现,成本低。
  • 可靠性要求高材料稳定,结构可靠,高品质衬底/外延。

氧化镓的目标市场:
  • 长期来说,氧化镓功率器件覆盖650V/1200V/1700V/3300V,预计2025年至2030年全面渗透车载和电气设备领域,未来也将在超高压的氧化镓专属市场发挥优势,如高压电源真空管等应用领域。
  • 短期来说,预计氧化镓功率器件将在门槛较低、成本敏感的中高压市场率先出现,如消费电子、家电以及能发挥材料高可靠、高性能的工业电源等领域。
氧化镓容易取胜的市场:
  • 新能源车OBC/逆变器/充电桩
  • DC/DC:12V/5V→48V转换
  • IGBT的存量市场

图片

图:氧化镓在功率器件的市场预测

(Ref:日本FLOSFIA公司)


1.5  氧化镓的应用领域:射频器件
GaN市场需要大尺寸、低成本的衬底,才能真正发挥GaN材料的优势。
同质衬底上生长同质外延的外延层品质是[敏感词]的,但由于GaN衬底价格很高,在LED、消费电子、射频等领域采用相对廉价的衬底,如Si、蓝宝石、SiC衬底,但这些衬底与GaN晶体结构的差异会造成晶格失配,相当于用成本牺牲了外延品质。当GaN同质外延GaN,才能用在激光器这类要求较高的应用场景。
GaN与氧化镓的晶格失配仅2.6%,以氧化镓衬底,异质外延生长的GaN品质高,且无铱法生长6寸氧化镓的成本接近硅,有望在GaN射频器件市场得到重要应用。

图片

图:2英寸带有GaN外延层的Synoptics氧化镓晶体管

(Ref:美国空军研究实验室AFRL,2020)


图片

表:GaN外延的衬底材料对比

(Ref:[1] 日本C&A公司;[2] S. B. Reese, et al., Joule, 3, 899, 2019, 美国可再生能源实验室(NREL))


1.6  氧化镓行业相关政策
国内的支持政策:
图片
美国禁运,呼唤国产化:
2022年8月12日,美国商务部产业安全局(BIS)对第四代半导体材料氧化镓(Ga2O3)和金刚石实施出口管制,认为其耐高压特性在[敏感词]领域的应用对美国国家安全至关重要。
化合物半导体【芯榜】旗下化合物半导体研究中心,聚焦碳化硅(SiC)、氮化镓(GaN)、砷化镓(GaAs)等化合物半导体。4篇原创内容公众号

02

氧化镓衬底的长晶与外延工艺


2.1 半导体材料的长晶工艺
熔体法是生长半导体材料最理想的方式,有以下几个优势。
  • 尺寸大:小籽晶能够长出大晶体;
  • 产量高:每炉晶锭可切出上千片衬底;
  • 品质好:位错可趋于0,晶体品质很好;
  • 长速快:每小时能够长几厘米,比气相法快得多。
氧化镓是宽禁带半导体中[敏感词]有常压液态的材料,即可用上述熔体法生长。氧化镓生长常用的直拉法为熔体法的一种,需要依赖铱坩埚(贵金属Ir单质),原因是直拉法生长氧化镓需要高温富氧的环境,否则原料容易分解成Ga和O2,影响产物,而只有贵金属铱坩埚能够在这种[敏感词]环境下保持稳定。
图片
表:半导体材料的长晶工艺对比

图片

图:直拉法生长氧化镓的示意图

(Ref:Y. Yuan,et al., Fundamental Research, 1, 697, 2021)


2.2 氧化镓的长晶工艺
由于直拉法原料挥发较多,氧化镓的长晶工艺从直拉法逐步演变为有铱盖和模具的导模法,两种方法均需使用铱坩埚,目前导模法已成为主流的氧化镓长晶方法。
然而由于铱坩埚的成本和损耗太高,生长几十炉后就会被腐蚀损耗,需要重新熔炼加工,且长晶过程中,铱会形成杂质进入晶体,产业界有很强的无铱法开发需求。
2022年4月,日本经济新闻网发布了一则消息,日本C&A公司采用一种铜坩埚的直拉法生长出2寸氧化镓单晶,能够将成本降至导模法的1/100。

图片

图:两种有铱法生长氧化镓的示意图及其氧化镓单晶产物:(左)直拉法;(右)导模法

(Ref:K. Heinselman,et al., Cryst. Growth Des., 22, 4854, 2022;Y. Yuan, et al., Fundamental Research, 1, 697, 2021)


图片

图:无铱法制备的氧化镓单晶

(Ref:日本C&A公司,2022)


氧化镓生长的工艺流程从原料在坩埚中熔化和拉晶开始,之后经过切、磨、抛的工序,形成氧化镓单晶衬底。再经过外延工艺,得到同质外延或异质外延结构,最终加工为氧化镓晶圆。

图片

图:无铱法与导模生长氧化镓的工艺流程

(Ref:K. Heinselman,et al., Cryst. Growth Des., 22, 4854, 2022;日本C&A公司)


2.3  有铱、无铱的成本对比
  • :美国国家可再生能源实验室(NREL)预测,在无额外晶圆制造工艺优化的情况下,有铱法长6寸氧化镓的成本为283美金(≈2000元人民币),采用各种节约成本的措施后,能够降到195美金。其中,铱坩埚及其损耗占据过半。
  • 无铱法:日本C&A公司报导了2寸无铱法的成果,宣称成本能够大幅下降至导模法的1/100。

图片

图:有铱法生长氧化镓衬底的成本分析

(Ref:S. B. Reese, et al., Joule, 3, 899, 2019, 美国可再生能源实验室(NREL))


2.4  氧化镓同质外延
氧化镓外延的速率与衬底的晶面取向相关,(100)面同质外延最难,(001)和(010)面较容易,因此在外延和器件工艺中,基本都是选择(001)或(010)面的氧化镓衬底。熔体法生长的优势面即(010)径向面,但是目前主流的EFG导模法仅可得到狭窄长方形晶片,侧面的(100)面最容易获得大尺寸,为了得到有价值的(001)和(010)面,必须制备大厚度的晶体进行斜角侧切,而大厚度晶体工艺较难实现,仅日本报道了超过10mm厚度的晶体,因此目前仅日本可以供应(001)和(010)面的衬底。
2014年,日本东京农工大学首次在(001)面获得大尺寸的外延薄膜,同时,2012-2015年间,β-Ga2O3大晶圆尺寸提高到了4寸,氧化镓的外延工艺推动了器件的发展,真正开启了氧化镓功率器件的应用。这就要求氧化镓的衬底厂商能够提供多规格晶面的产品。
目前,氧化镓外延工艺有HVPE(卤化物气相外延)和MOCVD(金属有机物化学气相沉积),HVPE设备可沉积厚膜、长膜速度快、设备造价低,但相关设备国外已禁运,我国产业界正在呼唤国产化的能力。日本NCT公司已使用HVPE实现了6英寸的氧化镓外延工艺。
2.5  氧化镓的掺杂与器件应用
与SiC类似,氧化镓也有导电衬底和半绝缘衬底,通过掺杂不同的元素获得,在功率器件中有不同的应用。

图片

图:不同掺杂下的氧化镓单晶(直拉法)

(左)掺Si,N型导通;(中)非故意掺杂,N型高阻;(右)掺Mg,绝缘

(Ref:Z. Galazka, et al, Journal of Crystal Growth, 404(184), 2014)


图片
图:(左)典型的氧化镓SBD垂直结构,采用了Si掺杂的导通衬底;(右)典型的氧化镓MOSFET平面结构,采用了Fe掺杂的绝缘衬底
(Ref:J. Zhang, et al, Journal of Synthetic Crystals, 49(11), 2020;Y. Lv, et al., Journal of Inorganic Mater., 23(9), 2018)

芯榜,赞444

03

氧化镓的学术研究应用发展


3.1  氧化镓衬底竞赛
SiC从2寸到6寸花了20年(1992-2012),而氧化镓从2寸到6寸仅4年(2014-2018)
  • 国外:日本NCT公司领跑全球氧化镓产业,供应全球近100%的氧化镓衬底,2寸片2.5万元,4寸片5-6万元。
  • 国内:中电科46所在2018年创造了国内的氧化镓4寸记录,山东大学于2022年也报道了4寸,目前国内还未出现有量产能力的公司或院校,一定程度上限制于铱坩埚的成本。

图片

图:国内外氧化镓衬底尺寸进度


(注:CZ为直拉法,EFG为导模法,均需要用铱坩埚,贵金属铱的价格约为黄金的三倍。NICT:日本国立信通院;Tamura:日本田村制作所;Namiki:日本精密宝石株式会社;IKZ:德国莱布尼兹晶体生长研究所)
3.2  氧化镓器件竞赛
  • 美国:美国的器件研究成果最突出,各种创新的结构和工艺极大地推动了氧化镓器件的进步。
  • 日本:得益于衬底和外延片的本国供应,最先形成日本国内的氧化镓产业链。
  • 中国:随着我国衬底和外延的进步,器件相关结果也达到了国际水平。

图片

图:国内外氧化镓SBD器件进展

(Ref:W. Li, et al., IEEE Electron Device Letters, 41(1), 2020;X. Wang, et al., Journal of Synthetic Crystals, 50(11), 2021.

NICT:日本国立信通院;Cornell:美国康奈尔大学)


图片

图:国内外氧化镓MOSFET器件进展

(Ref:S. Sharma, et al., IEEE Electron Device Letters, 41(6), 2020;X. Wang, et al., Journal of Synthetic Crystals, 50(11), 2021.

NICT:日本国立信通院;ARFL:美国空军研究实验室;Buffalo:美国纽约州立大学布法罗分校)

3.3  针对氧化镓材料缺点的研究
1、解决导热率低的问题
尽管氧化镓存在热量方面的挑战,但氧化镓的散热是工程可以解决的问题,并不构成产业化障碍。如下图所示,美国弗吉尼亚理工大学通过双面银烧结的封装方式解决散热问题,能够导走肖特基结处产生的热量,在结处的热阻为0.5K/W,底处1.43,瞬态时可以通过高达70A的浪涌电流。

图片

图:美国弗吉尼亚理工大学的器件结构,采用双面银烧结的封装方式解决散热问题

(Ref:B. Wanget al., IEEE Electron Device Lett., 42(8), 2021)


2、解决P型掺杂
氧化镓能带结构的价带无法有效进行空穴传导,因此难以制造P型半导体。近期斯坦福、复旦等团队已在实验室实现了氧化镓P型器件,预计将逐步导入产业化应用。如下图所示,斯坦福大学在2022年8月发表了实验室实现氧化镓P型垂直结构的成果,以Mg-SOG镁扩散的方式,形成PN结,开启电压为7V,开关速度109

图片

图:斯坦福大学的器件结构,在实验室形成疑似pn结

(Ref:K.Zenget al., IEEE Electron Device Lett., 43(9), 2022)


04

氧化镓的产业链与市场空间


4.1  氧化镓产业链
氧化镓衬底和外延环节位于功率器件的产业链上游。类比碳化硅产业链,价值集中于上游衬底和外延环节:1颗碳化硅器件的成本中,47%来自衬底,23%来自外延,衬底+外延共占70%。
随着氧化镓的成本进一步降低,衬底占比会比SiC小得多。
图片
图:氧化镓的产业链
4.2  氧化镓在功率器件的市场
日本氧化镓领域知名企业FLOSFIA预计,2025年氧化镓功率器件市场规模将开始超过GaN,2030年达到15.42亿美元(约人民币100亿元),达到SiC的40%,达到GaN的1.56倍。(注:FLOSFIA预测的数据比Yole预测的偏保守,Yole预测2027年碳化硅功率器件市场容量62.97亿美元,FLOSFIA预测2030年38.45亿美元。)
仅就新能源车市场而言,2021年全球新能源车销量650万辆,新能源汽车渗透率为14.8%,而碳化硅的渗透率为9%,随着新能源车的渗透率提高,市场规模将逐步扩大,目前现在SiC、GaN还远未达到能够左右市场的程度,相较而言,氧化镓的发展窗口非常充裕。

图片

图:全球功率器件市场和氧化镓功率器件市场规模(百万美元)

(Ref:日本FLOSFIA公司)


4.3  氧化镓在射频器件的市场
氧化镓在射频器件的市场容量可参考碳化硅外延氮化镓器件的市场。SiC半绝缘型衬底主要用于5G基站、卫星通讯、雷达等方向,2020年SiC外延GaN射频器件市场规模约8.91亿美元,2026年将增长至22.22亿美元(约人民币150亿元)。

图片

图:碳化硅外延氮化镓器件的市场规模(百万美元)

(Ref:YOLE)


05

氧化镓的竞争格局与产业化进展


日本:IDM全产业链领跑全球
国际上只有日本形成量产并开始产业化的应用,主要应用领域为工业电源、工业电机控制等,产业方以安川电机、佐鸟电机为主要代表。日本预计将在2023年量产氧化镓功率器件:
  • 日常NCT公司已在Ga2O3实验线上制造了器件样品,正在建设量产线,计划2023年量产。
  • 日本FLOSFIA将在2023年Q2之前,氧化镓器件的产能达到每月数十万个,向汽车零部件厂商等销售。
  • 日本电子零部件厂商田村制作所也将在2024年以每月数万个的规模启动生产,到2027年将产能提高至每月约6000万个。
图片
图:日本FLOSFIA公司的氧化镓功率器件市场战略
美国:氧化镓器件研究最为先进
美国目前仅Kyma公司有1寸衬底产品,单晶尺寸上落后于中国,产业链也较为空白。器件成果非常突出,创新能力强大,各种创新的结构和工艺极大地推动了氧化镓器件的进步。
中国:衬底环节紧追日本
我国的氧化镓衬底能够小批量供应,外延、器件环节产业化进程几乎空白,研发主力军和突出成果都在高校和科研院所当中。不过,我国氧化镓器件的研发处于世界Top3,在IP方面,扭转了在SiC领域的被动局面。目前的氧化镓的产业阶段类似SiC在特斯拉Model 3推出之前的状态,技术储备已经完成,等待标志性事件引爆市场。
总的来说,在未来10年,氧化镓器件将有可能成为直接与碳化硅竞争的电力电子器件,但作为半导体新材料,氧化镓市场规模的突破取决于成本的快速降低。未来几年是日本开始大规模导入氧化镓的关键阶段,中国能否紧跟业界脚步,需要国内氧化镓产业界携手努力。
本文作者:顾奕奕博士

免责声明:本文采摘自网络,本文仅代表作者个人观点,不代表澳门新葡萄新京威尼斯987及行业观点,只为转载与分享,支持保护知识产权,转载请注明原出处及作者,如有侵权请联系我们删除。

服务热线

0755-83044319

霍尔元件咨询

肖特基二极管咨询

TVS/ESD咨询

获取产品资料

客服微信

微信服务号