服务热线
0755-83044319
发布时间:2023-03-16作者来源:印宁华浏览:3732
TOF是Time of flight的简写,直译为飞行时间的意思。飞行时间技术在广义上可理解为通过测量物体、粒子或波在固定介质中飞越一定距离所耗费时间(介质/距离/时间均为已知或可测量),从而进一步理解离子或媒介某些性质的技术。
ToF测距方法属于双向测距技术,它主要利用信号在两个异步收发机(Transceiver)(或被反射面)之间往返的飞行时间来测量节点间的距离。传统的测距技术分为双向测距技术和单向测距技术。在信号电平比较好调制或在非视距视线环境下,基于RSSI(Received Signal Strength Indication,接收的信号强度指示)测距方法估算的结果比较理想;在视距视线环境下,基于ToF距离估算方法能够弥补基于RSSI距离估算方法的不足。
ToF测距方法有两个关键的约束:一是发送设备和接收设备必须始终同步;二是接收设备提供信号的传输时间的长短。为了实现时钟同步,ToF测距方法采用了时钟偏移量来解决时钟同步问题。Renesas(Intersil)的ToF信号处理IC——ISL29501方案就是典型的ToF方案,可用于所有光照条件,并且实现了小型化和电池应用的低功耗。因为信号处理器技术使用了基于相位的ToF来应对检测物体周围的环境光的影响。
ISL29501 是一款创新的飞行时间 ( Time of Flight,简称 ToF ) 信号处理 IC,可与外部发射器(LED或激光)及光敏二极管一起构成完整的目标物检测和距离测量解决方案。ISL29501 提供[敏感词]的功能,包括超小尺寸、低功耗和出色的性能,是构成物联网 ( IoT ) 的联网设备以及消费移动设备和新兴商业无人机应用的理想选择。ISL29501 采用电源管理技术专长来节省功耗,并通过多项创新成果延长电池续航时间。可编程电流可达 255mA 的片上发射器 DAC 允许系统设计工程师选择他们中意的用于驱动外红外 ( IR ) LED 或激光的电流电平。该特性可帮助优化距离测量、目标物检测和功率预算。ISL29501 的单次触发模式有助于设计工程师定义针对初始目标物检测和近似距离测量的采样周期,从而节省功耗,而连续模式能够更准确地测量距离。ISL29501 还执行系统校准,以适应外部元件由于温度和环境光条件变化而引起的性能波动。
ISL29501典型应用电路
2 微电子学
飞行时间技术可用来估计电子迁移相关性质。起初该原理被用于测量低电导率的薄膜,后来进一步拓展到了常见半导体等。利用激光或电压脉冲激发出来的大量电荷,该技术也能用于金属-绝缘体-金属(MDM)结构 [2] 或有机场效应晶体管 [3] 等领域。
在磁共振血管造影(Magnetic resonance angiography,MRA)领域,飞行时间法是一项主要的基础技术。MRA可用于动脉瘤,血管狭窄等症状的判断,或用于某些解剖学领域。
在飞行时间质谱学领域,不同的离子可通过电场加速至同样的动能,而其速度由质荷比决定。因此可用过飞行时间技术测量速度从而得知质荷比,并进一步得知动能等信息。
对于不具有高精度要求的应用,CW系统可能比基于脉冲的系统更易于实现,因为光源不一定要非常短,且具有快速的上升/下降沿,尽管很难再现。在实践中是完美的正弦波。然而,如果对精度的要求变得更加严格,则将需要更高频率的调制信号,并且在实践中可能难以实现。
由于照明信号的周期性,来自CW系统测量的任何相位测量都将每2π环绕一次,这意味着会有混叠距离。对于只有一个调制频率的系统,混叠距离也将是[敏感词]可测量距离。为了克服该限制,可以使用多个调制频率来执行相位展开,其中,如果具有不同调制频率的两个(或多个)相位测量值与估计距离相一致,则可以确定对象的真实距离。这种多调制频率方案还可用于减少多径误差,该误差在来自物体的反射光在返回传感器之前撞击另一个物体(或在透镜内部内部反射)时发生,从而导致测量误差。
取决于其配置,CMOS ToF成像器往往具有更大的灵活性和更快的读出速度,因此可以实现诸如感兴趣区域(RoI)输出之类的功能。
在温度范围内校准CW ToF系统可能比脉冲ToF系统容易。随着系统温度的升高,由于温度变化,解调信号和照明将相对于彼此偏移,但是这种偏移只会影响测量距离,而偏移误差在整个范围内都是恒定的,并且深度线性度基本保持稳定。
连续波系统的缺点:
尽管CMOS传感器与其他传感器相比具有更高的输出数据速率,但CW传感器需要在多个调制频率上进行四个相关函数采样以及多帧处理才能计算深度。较长的曝光时间可能会限制系统的总体帧速率,或者可能导致运动模糊,从而可能会将其限制用于某些类型的应用程序。这种更高的处理复杂性可能需要外部应用程序处理器,这可能超出了应用程序的要求。
对于更长距离的测量或环境光水平较高的环境,将需要更高的连续光功率(与脉冲ToF相比);激光的这种连续照射可能会导致散热和可靠性问题。
基于脉冲的ToF技术系统的优势:
基于脉冲的ToF技术系统通常依赖在短积分窗口内以非常短的脉冲串发射的高能量光脉冲。这具有以下优点:
它使设计对环境光稳定的系统变得更加容易,因此更有利于室外应用。
较短的曝光时间可[敏感词]地减少运动模糊的影响。
在基于脉冲的ToF系统中,照明的占空比通常比可比的CW系统的照明占空比低得多,因此具有以下优点:
在较低范围的应用中,它降低了系统的整体功耗。过将脉冲猝发置于帧中与其他系统不同的位置,可以避免来自其他脉冲ToF系统的干扰。这可以通过在各种系统的帧中协调脉冲的放置或通过使用外部光电检测器确定其他系统的脉冲的位置来完成。另一种方法是动态随机化脉冲突发的位置,这将消除协调各个系统之间的时序的需要,但不会完全消除干扰。由于脉冲时序和宽度不需要统一,因此可以实施不同的时序方案以实现诸如更宽的动态范围和自动曝光等功能。
基于脉冲的ToF技术系统的缺点:
由于透射光脉冲和快门的脉冲宽度需要相同,因此系统的定时控制需要非常精确,并且根据应用需要可能需要皮秒级的精度。为了获得[敏感词]效率,照明脉冲宽度必须非常短,但功率却很高。因此,激光驱动器需要非常快的上升/下降沿(小于1 ns)。与CW系统相比,温度校准可能更加复杂,因为温度变化会影响单个脉冲宽度,不仅影响偏移和增益,还影响其线性。
关于dTOF和iTOF
了解了ToF的概念之后,让我们再来深入了解一下两类ToF的基本成像原理
精度 精度指真实深度值和相机的测量值之间的差,是衡量一个测量设备的基本指标。
对于dToF,由于它采用单光子雪崩二极管(SPAD),能够在很短的时间间隔内测量吸收的光子数,最小能够在 级的时间内产生响应电流。TDC的时间分辨率也高于 ,所以它的理论精度可以达到 。但是,由于雪崩过程存在量子噪声和放大器噪声,以及dToF中TDC模块存在的固有噪声,导致目前dToF的实际精度只能达到cm级,和iToF相近。但是,理论上dToF的测量误差不会随着测量距离的增加而增大。
有效探测距离 有效探测距离指相机能够输出可靠深度的距离范围,可靠深度意味着该深度值和真实值的误差小于一定阈值。举个简单的例子,假设测量误差在2cm以内时,我们视作该深度值是可靠的。如果一个ToF模组测量5米的物体时,测量值是5.02米,误差刚好达到了预先定义的极限。当物体位于5.01米时,测量值是5.22米,误差超出了2cm。我们就可以说该ToF模组的有效探测距离是5米。
能耗 从发射信号来看, dToF则采用 级的脉冲激光,iToF目前大多采用连续波调制。相比较而言,脉冲波能够达到超低占空比,所以功耗也较低。
成本 dToF采用的是数字电路架构,不需要模数转换。iToF采用的是模拟电路结构,需要模数转换芯片。
抗环境干扰 环境干扰包括场景中环境光干扰、多路径反射光干扰以及不同表面灰度等影响。这一类环境干扰发生在外界,和ToF本身的关系不大,环境干扰的差异主要是由不同ToF的测距原理引起的。
应用场景 dToF功耗低,并且体积小巧,更加适合工业机器人等需快速进行测距避障检测的应用,以及其他在空间受限的紧凑型设计中。
免责声明:本文转载自“大印蓝海科技”,本文仅代表作者个人观点,不代表澳门新葡萄新京威尼斯987及行业观点,只为转载与分享,支持保护知识产权,转载请注明原出处及作者,如有侵权请联系我们删除。
友情链接:站点地图 澳门新葡萄新京威尼斯987官方微博 立创商城-澳门新葡萄新京威尼斯987专卖 金航标官网 金航标英文站
Copyright ©2015-2025 澳门新葡萄新京威尼斯987 版权所有 粤ICP备20017602号