服务热线
0755-83044319
发布时间:2022-03-18作者来源:澳门新葡萄新京威尼斯987浏览:1734
这与其他宽带隙半导体的区别,怎么夸张都不过分。除碳化硅(SiC)以外,其他所有新兴宽带隙半导体根本没有大尺寸半导体基底可供生长大晶体。这意味着它们必须生长在另一种材料盘中,而这是有代价的。例如,氮化镓通常依靠复杂的工艺在硅、碳化硅或蓝宝石基底上生长。不过,这些基底的晶体结构明显不同于氮化镓的晶体结构,这种差异会造成基底和氮化镓之间的“晶格失配”,从而产生大量缺陷。这些缺陷会给生产的设备带来一系列问题。氧化镓由于作为自己的基底,所以不存在不匹配的情况,也就没有缺陷。日本埼玉的诺维晶科技术公司已经开发出150毫米的β-氧化镓晶圆。
日本国家信息与通信技术研究所(NICT,位于东京)的东胁正高(Masataka Higashiwaki)是[敏感词]个发现β-氧化镓在电源开关中的潜力的人。2012年,他的团队报告了[敏感词]单晶β-氧化镓晶体管,震惊了整个半导体器件界。这是一种名为“金属半导体场效应晶体管”的器件。它有多好呢?击穿电压是功率晶体管的关键指标之一,达到这个临界点,半导体阻止电流流动的能力就会崩溃。东胁研究的开创性晶体管的击穿电压大于250伏。相比之下,氮化镓花了近20年的时间才达到这一水平。
在东胁的开创性研究中,他还介绍了由于使用高临界电场强度的材料而大幅降低功率损耗的情况。电场强度以Ec表示,是氧化镓真正的超能力。简单地说,如果在两个导体之间放置一种材料,把电压调高,那么Ec就是该材料开始导电的电场,而且导电能力很强,有时会带来灾难性后果。硅的临界电场强度通常为每厘米几百千伏,而氧化镓的临界电场强度为每厘米8兆伏。
非常高的Ec对理想的功率开关晶体管而言至关重要。理想情况下,设备会在两种状态之间即时切换:一直导通,在没有电阻的情况下导电;一直断开,处于完全不导电的状态。这两种不可能的[敏感词]意味着两种截然不同的器件几何结构。对于关断状态,晶体管的源极和漏极之间需要有一个较厚的材料区域,以防止导通和阻止大电压。对于导通状态,则需要一个无限薄的区域,使之没有电阻。
不过,在更快的开关电源应用中,氧化镓是否有用?Ec在这里也很重要,这可能会给氧化镓带来很大的优势。在更高的频率下,比如100千赫兹到1兆赫,与接通或关闭状态相比,器件花费在切换上的时间将成比例地增加。开关过程中的损耗等于器件的电阻与开关切换时晶体管栅极上所需积聚电荷的乘积。从数学计算来看,这意味着损耗与临界电场强度的平方成正比,而不是与立方成正比(就像低频时一样)。
2015年,在测量功率开关的Ec时,我们还推测,同样地在更小的器件中允许更高的电场,氧化镓可能会在射频电路中取得类似成功。不过那时我们缺少一个关键信息,即还没有关于材料中的电子速度与电场的函数关系的公开数据。
在用于放大射频信号的晶体管中,电子速度尤其重要。对射频技术来说,高功率输出和高频率是目标,约翰逊优值(JFOM)对此进行了总结。约翰逊优值表明,射频晶体管的功率和频率的乘积与半导体材料中载流子的[敏感词]速度和Ec的乘积直接成正比。其中的关键在于,在射频晶体管中,只有当载流子能够在射频波形的极性转换之前从源极一路到达漏极,才能实现放大。发生这种情况的[敏感词]频率称为“统一电流增益频率”(fT)。此处,氧化镓的高临界电场再次发挥作用,因为你可以缩小临界距离,同时仍然提供强大的电场来加速电子使其达到[敏感词]速度。 2017年,我们在美国空军研究实验室成功研发了[敏感词]亚微米级的氧化镓射频MOSFET。这些器件一开始的数据就令人印象深刻,虽然这些数据与氮化镓的数据不是一个级别。它们的统一电流增益频率为3千兆赫,[敏感词]振荡频率为13千兆赫;800兆赫时,输出功率密度为每毫米230毫瓦。之后,美国空军研究实验室还展示了1千兆赫时,脉冲射频功率输出密度超过每毫米500毫瓦的情况,[敏感词]振荡频率接近20千兆赫。更令人鼓舞的是,大约在同一时期,布法罗大学的克里什内杜•戈什(Krishnendu Ghosh)和乌塔姆•辛吉塞蒂(Uttam Singisetti)发表了理论计算结果,表明氧化镓的JFOM明显优于氮化镓。 自2017年首次展示其射频性能以来,射频氧化镓技术取得的最显著的进步是斯里拉姆•里希纳穆尔蒂(Sriram Krishnamoorthy)以及他与俄亥俄州立大学的希达思•拉詹(Siddharth Rajan)团队研发的新型掺杂技术和经过改进的掺杂技术。这些技术借鉴了硅技术,在使用这些技术生产的半导体中,发生导电的材料片中的电阻非常低,大约为每平方300欧姆(这就是正确的单位)。这和氮化镓器件中的水平相当。得到这一结果后不久,拉詹和加州大学圣芭芭拉分校的研究人员独立研发了类似高电子迁移率晶体管(HEMT)的氧化镓。 这类器件通常由砷化镓(GaAs)或氮化镓制成,是手机和卫星电视接收器的重要射频支柱。这类器件不是通过体半导体的掺杂沟道导电,而是通过在两个带隙不同的半导体之间的尖锐界面上形成的二维电子气来导电。这种情况中的半导体是氧化铝镓和氧化镓,与智能手机中的商用砷化铝镓/砷化镓HEMT技术完全相似。这些关键突破有利于射频器件的纵向和横向扩展。 尽管这些发展很有前景,但氧化镓不太可能挑战砷化镓或氮化镓在所有射频应用中的地位。了解到它本质上是一款很好的开关后,我们希望它在开关模式放大器(如D类、E类,或F类)中具备优势。在这些放大器中,该器件运行时的导通电阻非常低,并且可以利用低电流、高击穿电压特性来实现非常高的效率。另一方面,要求低阻抗和高电流的器件应用将青睐氮化镓,主要是因为其载流子迁移率和载流子密度较高。那么,氧化镓有什么缺点?这种材料的致命弱点在于它的导热性不佳。事实上,在所有可用于射频放大或功率切换的半导体中,它的导热性最差。氧化镓的热导率只有金刚石的1/60,碳化硅(高性能射频氮化镓的基底)的1/10,约为硅的1/5。(有趣的是,它可以媲美主要射频材料砷化镓。)低热导率意味着晶体管中产生的热量可能会停留,有可能极大地限制器件的寿命。
不过,在放弃它之前,需要考虑以下问题:由于材料会对器件产生影响,因此要得到有关其热导率的真实同类比较结果,我们需要将它标准化为材料处理功率的能力。换言之,要除以Ec才能准确比较实际器件中的预期热问题。由此我们会发现,每种带隙比硅大的半导体(甚至是金刚石)在充分发挥其潜能时,都有散热问题。虽然这一事实对氧化镓而言于事无补,但它能推动我们努力寻找更好的散热方法。
另一个更基本的问题是,我们只能让氧化镓传导电子而不能实现空穴导电。从来没有人能用氧化镓制造良好的p 型导体。此外,令人沮丧的是,这种材料的基本电子特性使其在这方面希望渺茫。特别是,这种材料的能带结构的价带部分不具有空穴传导的形状。因此,即使有一种掺杂剂能使受体处于正确能级,所产生的空穴也会在它帮助传导之前困住自己。理论和数据如此一致时,很难找到办法解决这个问题。
当然,在发展的道路上我们会打破一些东西(主要是电介质),但这就是颠覆性技术的定义。我们用已知的东西来换取潜在的性能,而目前,氧化镓的性能潜力远远大于其问题。
免责声明:本文转载自“半导体行业观察”,本文仅代表作者个人观点,不代表澳门新葡萄新京威尼斯987及行业观点,只为转载与分享,支持保护知识产权,转载请注明原出处及作者,如有侵权请联系我们删除。
公司电话:+86-0755-83044319
传真/FAX:+86-0755-83975897
邮箱:1615456225@qq.com
QQ:3518641314 李经理
QQ:332496225 丘经理
地址:深圳市龙华新区民治大道1079号展滔科技大厦C座809室
友情链接:站点地图 澳门新葡萄新京威尼斯987官方微博 立创商城-澳门新葡萄新京威尼斯987专卖 金航标官网 金航标英文站
Copyright ©2015-2024 澳门新葡萄新京威尼斯987 版权所有 粤ICP备20017602号-1