和普通双极型晶体管相比,MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势,在开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域得到了越来越普遍的应用。
MOS管是FET的一种(另一种为JFET结型场效应管),主要有两种结构形式:N沟道型和P沟道型;又根据场效应原理的不同,分为耗尽型(当栅压为零时有较大漏极电流)和增强型(当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流)两种。因此,MOS管可以被制构成P沟道增强型、P沟道耗尽型、N沟道增强型、N沟道耗尽型4种类型产品。
每一个MOS管都提供有三个电极:Gate栅极(表示为“G”)、Source源极(表示为“S”)、Drain漏极(表示为“D”)。接线时,对于N沟道的电源输入为D,输出为S;P沟道的电源输入为S,输出为D;且增强型、耗尽型的接法基本一样。
从结构图可发现,N沟道型场效应管的源极和漏极接在N型半导体上,而P沟道型场效应管的源极和漏极则接在P型半导体上。场效应管输出电流由输入的电压(或称场电压)控制,其输入的电流极小或没有电流输入,使得该器件有很高的输入阻抗,这也是MOS管被称为场效应管的重要原因。
N沟道增强型MOS管在P型半导体上生成一层SiO2薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极(漏极D、源极S);在源极和漏极之间的SiO2绝缘层上镀一层金属铝作为栅极G;P型半导体称为衬底,用符号B表示。由于栅极与其它电极之间是相互绝缘的,所以NMOS又被称为绝缘栅型场效应管。
当栅极G和源极S之间不加任何电压,即VGS=0时,由于漏极和源极两个N+型区之间隔有P型衬底,相当于两个背靠背连接的PN结,它们之间的电阻高达1012Ω,即D、S之间不具备导电的沟道,所以无论在漏、源极之间加何种极性的电压,都不会产生漏极电流ID。
当将衬底B与源极S短接,在栅极G和源极S之间加正电压,即VGS>0时,如图表3(a)所示,则在栅极与衬底之间产生一个由栅极指向衬底的电场。在这个电场的作用下,P衬底表面附近的空穴受到排斥将向下方运动,电子受电场的吸引向衬底表面运动,与衬底表面的空穴复合,形成了一层耗尽层。
如果进一步提高VGS电压,使VGS达到某一电压VT时,P衬底表面层中空穴全部被排斥和耗尽,而自由电子大量地被吸引到表面层,由量变到质变,使表面层变成了自由电子为多子的N型层,称为“反型层”,如图表3(b)所示。
反型层将漏极D和源极S两个N+型区相连通,构成了漏、源极之间的N型导电沟道。把开始形成导电沟道所需的VGS值称为阈值电压或开启电压,用VGS(th)表示。显然,只有VGS>VGS(th)时才有沟道,而且VGS越大,沟道越厚,沟道的导通电阻越小,导电能力越强;“增强型”一词也由此得来。
在VGS>VGS(th)的条件下,如果在漏极D和源极S之间加上正电压VDS,导电沟道就会有电流流通。漏极电流由漏区流向源区,因为沟道有一定的电阻,所以沿着沟道产生电压降,使沟道各点的电位沿沟道由漏区到源区逐渐减小,靠近漏区一端的电压VGD最小,其值为VGD=VGS-VDS,相应的沟道最薄;靠近源区一端的电压[敏感词],等于VGS,相应的沟道最厚。
这样就使得沟道厚度不再是均匀的,整个沟道呈倾斜状。随着VDS的增大,靠近漏区一端的沟道越来越薄。
当VDS增大到某一临界值,使VGD≤VGS(th)时,漏端的沟道消失,只剩下耗尽层,把这种情况称为沟道“预夹断”,如图表4(a)所示。继续增大VDS[即VDS>VGS-VGS(th)],夹断点向源极方向移动,如图表4(b)所示。
尽管夹断点在移动,但沟道区(源极S到夹断点)的电压降保持不变,仍等于VGS-VGS(th)。因此,VDS多余部分电压[VDS-(VGS-VGS(th))]全部降到夹断区上,在夹断区内形成较强的电场。这时电子沿沟道从源极流向夹断区,当电子到达夹断区边缘时,受夹断区强电场的作用,会很快的漂移到漏极。
P沟道增强型MOS管因在N型衬底中生成P型反型层而得名,其通过光刻、扩散的方法或其他手段,在N型衬底(基片)上制作出两个掺杂的P区,分别引出电极(源极S和漏极D),同时在漏极与源极之间的SiO2绝缘层上制作金属栅极G。其结构和工作原理与N沟道MOS管类似;只是使用的栅-源和漏-源电压极性与N沟道MOS管相反。
在正常工作时,P沟道增强型MOS管的衬底必须与源极相连,而漏极对源极的电压VDS应为负值,以保证两个P区与衬底之间的PN结均为反偏,同时为了在衬底顶表面附近形成导电沟道,栅极对源极的电压也应为负。
当VDS=0时。在栅源之间加负电压比,由于绝缘层的存在,故没有电流,但是金属栅极被补充电而聚集负电荷,N型半导体中的多子电子被负电荷排斥向体内运动,表面留下带正电的离子,形成耗尽层。
随着G、S间负电压的增加,耗尽层加宽,当VDS增大到一定值时,衬底中的空穴(少子)被栅极中的负电荷吸引到表面,在耗尽层和绝缘层之间形成一个P型薄层,称反型层,如图表6(2)所示。
这个反型层就构成漏源之间的导电沟道,这时的VGS称为开启电压VGS(th),达到VGS(th)后再增加,衬底表面感应的空穴越多,反型层加宽,而耗尽层的宽度却不再变化,这样我们可以用VGS的大小控制导电沟道的宽度。
图表7 P沟道增强型MOS管耗尽层及反型层形成示意图
当VDS≠0时。导电沟道形成以后,D、S间加负向电压时,那么在源极与漏极之间将有漏极电流ID流通,而且ID随VDS而增,ID沿沟道产生的压降使沟道上各点与栅极间的电压不再相等,该电压削弱了栅极中负电荷电场的作用,使沟道从漏极到源极逐渐变窄,如图表7(1)所示。
当VDS增大到使VGD=VGS(即VDS=VGS-VGS(TH)),沟道在漏极附近出现预夹断,如图表7(2)所示。再继续增大VDS,夹断区只是稍有加长,而沟道电流基本上保持预夹断时的数值,其原因是当出现预夹断时再继续增大VDS,VDS的多余部分就全部加在漏极附近的夹断区上,故形成的漏极电流ID近似与VDS无关。
图表8 P沟道增强型MOS管预夹断及夹断区形成示意图
N沟道耗尽型MOS管的结构与增强型MOS管结构类似,只有一点不同,就是N沟道耗尽型MOS管在栅极电压VGS=0时,沟道已经存在。这是因为N沟道是在制造过程中采用离子注入法预先在D、S之间衬底的表面、栅极下方的SiO2绝缘层中掺入了大量的金属正离子,该沟道亦称为初始沟道。
当VGS=0时,这些正离子已经感应出反型层,形成了沟道,所以只要有漏源电压,就有漏极电流存在;当VGS>0时,将使ID进一步增加;VGS<0时,随着VGS的减小,漏极电流逐渐减小,直至ID=0。对应ID=0的VGS称为夹断电压或阈值电压,用符号VGS(off)或Up表示。
由于耗尽型MOSFET在VGS=0时,漏源之间的沟道已经存在,所以只要加上VDS,就有ID流通。如果增加正向栅压VGS,栅极与衬底之间的电场将使沟道中感应更多的电子,沟道变厚,沟道的电导增大。
如果在栅极加负电压(即VGS<0),就会在相对应的衬底表面感应出正电荷,这些正电荷抵消N沟道中的电子,从而在衬底表面产生一个耗尽层,使沟道变窄,沟道电导减小。当负栅压增大到某一电压VGS(off)时,耗尽区扩展到整个沟道,沟道完全被夹断(耗尽),这时即使VDS仍存在,也不会产生漏极电流,即ID=0。
图表9 N沟道耗尽型MOS管结构(左)及转移特性(右)示意图
P沟道耗尽型MOS管的工作原理与N沟道耗尽型MOS管完全相同,只不过导电的载流子不同,供电电压极性也不同。
耗尽型与增强型的主要区别在于耗尽型MOS管在G端(Gate)不加电压时有导电沟道存在,而增强型MOS管只有在开启后,才会出现导电沟道;两者的控制方式也不一样,耗尽型MOS管的VGS(栅极电压)可以用正、零、负电压控制导通,而增强型MOS管必须使得VGS>VGS(th)(栅极阈值电压)才行。
由于耗尽型N沟道MOS管在SiO2绝缘层中掺有大量的Na+或K+正离子(制造P沟道耗尽型MOS管时掺入负离子),当VGS=0时,这些正离子产生的电场能在P型衬底中感应出足够的电子,形成N型导电沟道;当VGS>0时,将产生较大的ID(漏极电流);如果使VGS<0,则它将削弱正离子所形成的电场,使N沟道变窄,从而使ID减小。
这些特性使得耗尽型MOS管在实际应用中,当设备开机时可能会误触发MOS管,导致整机失效;不易被控制,使得其应用极少。
因此,日常我们看到的NMOS、PMOS多为增强型MOS管;其中,PMOS可以很方便地用作高端驱动。不过PMOS由于存在导通电阻大、价格贵、替换种类少等问题,在高端驱动中,通常还是使用NMOS替代,这也是市面上无论是应用还是产品种类,增强型NMOS管最为常见的重要原因,尤其在开关电源和马达驱动的应用中,一般都用NMOS管。
导通的意义是作为开关,相当于开关闭合。NMOS的特性,VGS大于一定的值就会导通,适用于源极接地时的情况(低端驱动),只需栅极电压达到4V或10V就可以了。PMOS的特性是,VGS小于一定的值就会导通,适用于源极接VCC时的情况(高端驱动)。
不管是NMOS还是PMOS,导通后都有导通电阻存在,电流就会被电阻消耗能量,这部分消耗的能量叫做导通损耗。小功率MOS管导通电阻一般在几毫欧至几十毫欧左右,选择导通电阻小的MOS管会减小导通损耗。
MOS管在进行导通和截止时,两端的电压有一个降落过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,这称之为开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。
导通瞬间电压和电流的乘积越大,构成的损失也就越大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。
跟双极性晶体管相比,MOS管需要GS电压高于一定的值才能导通,而且还要求较快的导通速度。在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,理论上就是对电容的充放电。
对电容的充电需要一个电流,由于对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时[敏感词]个要留意的是可提供瞬间短路电流的大小;第二个要留意的是,普遍用于高端驱动的NMOS,导通时需要栅极电压大于源极电压。
而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极导通电压要比VCC高4V或10V,而且电压越高,导通速度越快,导通电阻也越小。
漏极和源极之间有一个寄生二极管,即“体二极管”,在驱动感性负载(如马达、继电器)应用中,主要用于保护回路。不过体二极管只在单个MOS管中存在,在集成电路芯片内部通常是没有的。
不同耐压的MOS管,其导通电阻中各部分电阻比例分布不同。如耐压30V的MOS管,其外延层电阻仅为总导通电阻的29%,耐压600V的MOS管的外延层电阻则是总导通电阻的96.5%。
不同耐压MOS管的区别主要在于,耐高压的MOS管其反应速度比耐低压的MOS管要慢,因此,它们的特性在实际应用中也表现出了不一样之处,如耐中低压MOS管只需要极低的栅极电荷就可以满足强大电流和大功率处理能力,除开关速度快之外,还具有开关损耗低的特点,特别适应PWM输出模式应用;而耐高压MOS管具有输入阻抗高的特性,在电子镇流器、电子变压器、开关电源方面应用较多。
首先是开关速度的不同。三极管工作时,两个PN结都会感应出电荷,当开关管处于导通状态时,三极管处于饱和状态,假设这时三极管截至,PN结感应的电荷要恢复到平衡状态,这个过程需求时间。而MOS由于工作方式不同,不需要恢复时间,因此可以用作高速开关管。
其次是控制方式不同。MOS管是电压控制元件,而三级管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用MOS管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用三极管。
接着是载流子种类数量不同。电力电子技术中提及的单极器件是指只靠一种载流子导电的器件,双极器件是指靠两种载流子导电的器件。MOS管只应用了一种多数载流子导电,所以也称为单极型器件;而三极管是既有多数载流子,也应用少数载流子导电;是为双极型器件。
第三是灵活性不同。有些MOS管的源极和漏极可以互换运用,栅压也可正可负,灵活性比三极管好。
第四是集成能力不同。MOS管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多MOS管集成在一块硅片上,因此MOS管在大范围集成电路中得到了普遍的应用。
第五是输入阻抗和噪声能力不同。MOS管具有较高输入阻抗和低噪声等优点,被普遍应用于各种电子设备中,特别用MOS管做整个电子设备的输入级,可以获得普通三极管很难达到的性能。
最后是功耗损耗不同。同等情况下,采用MOS管时,功耗损耗低;而选用三极管时,功耗损耗要高出许多。
当然,在使用成本上,MOS管要高于三极管,因此根据两种元件的特性,MOS管常用于高频高速电路、大电流场所,以及对基极或漏极控制电流比较敏感的中央区域;而三极管则用于低成本场所,达不到效果时才会考虑替换选用MOS管。
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS绝缘栅型场效应管组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和功率晶体管(GTR)的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。常见的IGBT又分为单管和模块两种,单管的外观和MOS管有点相像,常见生产厂家有富士电机、仙童半导体等,模块产品一般为内部封装了数个单个IGBT,由内部联接成适合的电路。
制造成本上,IGBT要比MOS管高很多,这是因为IGBT的制作多了薄片背面离子注入、薄片低温退火(如激光退火)工序,而这两个工序都需要专门针对薄片工艺的昂贵机台。
在低压下,低压MOS管的导通压降通常都控制在0.5V以下(基本不会超过1V的),比如IR4110低压MOS管,其内阻为4mΩ,给它100A的导通电流,导通压降是0.4V左右。电流导通压降低,意味着导通损耗小,同时兼具开关损耗小的特性,因此,IGBT相对MOS管在电性能没有优势,加上在性价比上MOS管更具优势,所以基本上看不到低压IGBT。
MOS管的[敏感词]劣势是随着耐压升高,内阻迅速增大,所以高压下内阻很大,致使MOS管不能做大功率应用。
在高压领域,MOS管的开关速度仍是最快的,但高压下MOS管的导通压降很大(内阻随耐压升高而迅速升高),即便是耐压600V的COOLMOS管,导通电阻可高达几欧姆,致使耐流很小。
而IGBT在高耐压下,导通压降几乎没明显增大(IGBT的导通电流通过三极管处理),所以高压下IGBT优势明显,既有高开关速度,又有三极管的大电流特性;另外,在新一代IGBT产品中,开关速度高(纳秒级),导通压降、开关损耗等也有了长足进步,使得IGBT耐脉冲电流冲击力更强,且耐压高、驱动功率小等优点更加突出。
在需要耐压超过150V的使用条件下,MOS管已经基本没有优势。以典型的IRFS4115与第四代IGBT型SKW30N60对比中,在150V、20A连续工况下运行,前者开关损耗为6mJ/pulse,而后者只有1.15mJ/pulse,不足前者的1/5;若用极限工作条件,二者功率负荷相差将更悬殊!
目前,诸如冶金、钢铁、高速铁路、船舶等有大功率需求的领域已较少见到MOS管,而是广泛应用IGBT元器件。
总的来说,IGBT更适用于高压、大电流、低频率(20KHZ左右)场所,电压越高,IGBT越有优势,在600v以上,IGBT的优势非常明显;而MOSFET更适用于低电压、小电流、低频率(几十KHz~几MHz)领域,电压越低,MOS管越有优势。
场效应管的参数很多,包括极限参数、动态电特性参数和静态电特性参数,其中重要的参数有:饱和漏源电流IDSS、夹断电压Up、开启电压VT(加强型绝缘栅管)、跨导gM、漏源击穿电压BVDS、[敏感词]耗散功率PDSM和[敏感词]漏源电流IDSM等。
[敏感词]额定参数,要求所有数值取得条件为Ta=25℃。
图表14 MOS管的[敏感词][敏感词]额定值示例
在栅源短接,漏源额定电压VDSS[或写作V(BR)DSS]是指漏-源未发生雪崩击穿前所能施加的[敏感词]电压。根据温度的不同,实际雪崩击穿电压可能低于额定VDSS。
VGS[或写作V(BR)GSS]额定电压是栅源两极间可以施加的[敏感词]电压。设定该额定电压的主要目的是防止电压过高导致的栅氧化层损伤。实际栅氧化层可承受的电压远高于额定电压,但是会随制造工艺的不同而改变,因此保持VGS在额定电压以内可以保证应用的可靠性。
ID定义为芯片在[敏感词]额定结温TJ(max)下,管表面温度在25℃或者更高温度下,可允许的[敏感词]连续直流电流。该参数为结与管壳之间额定热阻RθJC和管壳温度的函数:
ID中并不包含开关损耗,并且实际使用时保持管表面温度在25℃(Tcase)也很难。因此,硬开关应用中实际开关电流通常小于ID 额定值@ TC=25℃的一半,通常在1/3~1/4。
注:采用热阻JA可以估算出特定温度下的ID,这个值更有现实意义。
IDM/IDSM 脉冲漏极电流/[敏感词]漏源电流
该参数反映了器件可以处理的脉冲电流的高低,脉冲电流要远高于连续的直流电流。定义IDM的目的在于:线的欧姆区。对于一定的栅-源电压,MOSFET导通后,存在[敏感词]的漏极电流,如图表15所示,对于给定的一个栅-源电压,如果工作点位于线性区域内,漏极电流的增大会提高漏-源电压,由此增大导通损耗。长时间工作在大功率之下,将导致器件失效。因此,在典型栅极驱动电压下,需要将额定IDM设定在区域之下,区域的分界点在VGS和曲线相交点。
图表15 MOSFET导通后,存在[敏感词]的漏极电流
因此需要设定电流密度上限,防止芯片温度过高而烧毁。这本质上是为了防止过高电流流经封装引线,因为在某些情况下,整个芯片上最“薄弱的连接”不是芯片,而是封装引线。
考虑到热效应对于IDM的限制,温度的升高依赖于脉冲宽度,脉冲间的时间间隔,散热状况,RDS(on)以及脉冲电流的波形和幅度。单纯满足脉冲电流不超出IDM上限并不能保证结温不超过[敏感词]允许值。可以参考热性能与机械性能中关于瞬时热阻的讨论,来估计脉冲电流下结温的情况。
亦即容许沟道总功耗,标定了器件可以消散的[敏感词]功耗,可以表示为[敏感词]结温和管壳温度为25℃时热阻的函数。
这两个参数标定了器件工作和存储环境所允许的结温区间。设定这样的温度范围是为了满足器件最短工作寿命的要求。如果确保器件工作在这个温度区间内,将极大地延长其工作寿命。
如果电压过冲值(通常由于漏电流和杂散电感造成)未超过击穿电压,则器件不会发生雪崩击穿,因此也就不需要消散雪崩击穿的能力。雪崩击穿能量标定了器件可以容忍的瞬时过冲电压的安全值,其依赖于雪崩击穿需要消散的能量。
定义额定雪崩击穿能量的器件通常也会定义额定EAS。额定雪崩击穿能量与额定UIS具有相似的意义。EAS标定了器件可以安全吸收反向雪崩击穿能量的高低。
L是电感值,ID为电感上流过的电流峰值,其会突然转换为测量器件的漏极电流。电感上产生的电压超过MOSFET击穿电压后,将导致雪崩击穿。雪崩击穿发生时,即使MOSFET处于关断状态,电感上的电流同样会流过MOSFET器件。电感上所储存的能量与杂散电感上存储,由MOSFET消散的能量类似。
MOSFET并联后,不同器件之间的击穿电压很难完全相同。通常情况是:某个器件率先发生雪崩击穿,随后所有的雪崩击穿电流(能量)都从该器件流过。
重复雪崩能量已经成为“工业标准”,但是在没有设定频率、其它损耗以及冷却量的情况下,该参数没有任何意义。散热(冷却)状况经常制约着重复雪崩能量。对于雪崩击穿所产生的能量高低也很难预测。
额定EAR的真实意义在于标定了器件所能承受的反复雪崩击穿能量。该定义的前提条件是:不对频率做任何限制,从而器件不会过热,这对于任何可能发生雪崩击穿的器件都是现实的。在验证器件设计的过程中,[敏感词]可以测量处于工作状态的器件或者热沉的温度,来观察MOSFET器件是否存在过热情况,特别是对于可能发生雪崩击穿的器件。
对于某些器件,雪崩击穿过程中芯片上电流集边的倾向要求对雪崩电流IAR进行限制。这样,雪崩电流变成雪崩击穿能量规格的“精细阐述”;其揭示了器件真正的能力。
每种MOS管都会给出其安全工作区域,功率MOS管不会表现出二次击穿,因此安全运行区域只简单从导致结温达到[敏感词]允许值时的耗散功率定义。
V(BR)DSS/VBDSS 漏源击穿电压(破坏电压)
或叫BVDS,是指在特定的温度和栅源短接情况下,流过漏极电流达到一个特定值时的漏源电压。这种情况下的漏源电压为雪崩击穿电压。
V(BR)DSS是正温度系数,其漏源电压的[敏感词]额定值随着温度的下降而降低,在-50℃时,V(BR)DSS大约是25℃时[敏感词]漏源额定电压的90%。
在增加栅源电压过程中,使栅极电流IG由零开端剧增时的VGS。
也用VT表示,是指加的栅源电压能使漏极开始有电流,或关断MOSFET时电流消失时的电压,测试的条件(漏极电流、漏源电压、结温)也是有规格的。正常情况下,所有的MOS栅极器件的阈值电压都会有所不同。因此,VGS(th)的变化范围是规定好的。VGS(th)是负温度系数,当温度上升时,MOSFET将会在比较低的栅源电压下开启。
也用Up表示,是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。
是指在特定的漏电流(通常为ID电流的一半)、栅源电压和25℃的情况下测得的漏-源电阻。
即在栅、源极之间加的电压与栅极电流之比,这一特性有时以流过栅极的栅流表示MOS管的RGS能够很容易地超越1010Ω。
也称为饱和漏源电流,是指在当栅源电压VGS=0时,在特定的漏源电压下的漏源之间泄漏电流。既然泄漏电流随着温度的增加而增大,IDSS在室温和高温下都有规定。漏电流造成的功耗可以用IDSS乘以漏源之间的电压计算,通常这部分功耗可以忽略不计。
将漏源短接,用交流信号测得的栅极和源极之间的电容就是输入电容。Ciss是由栅漏电容Cgd和栅源电容Cgs并联而成,或者Ciss=Cgs+Cgd。当输入电容充电致阈值电压时器件才能开启,放电致一定值时器件才可以关断。因此驱动电路和Ciss对器件的开启和关断延时有着直接的影响。
将栅源短接,用交流信号测得的漏极和源极之间的电容就是输出电容。Coss是由漏源电容Cds和栅漏电容Cgd并联而成,或者Coss=Cds+Cgd,对于软开关的应用,Coss非常重要,因为它可能引起电路的谐振
在源极接地的情况下,测得的漏极和栅极之间的电容为反向传输电容。反向传输电容等同于栅漏电容。Cres=Cgd,反向传输电容也常叫做米勒电容,对于开关的上升和下降时间来说是其中一个重要的参数,他还影响这关断延时时间。电容随着漏源电压的增加而减小,尤其是输出电容和反向传输电容。
表示输出电容Coss在MOS管存储的能量大小。由于MOS管的输出电容Coss有非常明显的非线性特性,随VDS电压的变化而变化。所以如果Datasheet提供了这个参数,对于评估MOS管的开关损耗很有帮助。并非所有的MOS管手册中都会提供这个参数,事实上大部分Datasheet并不提供。
该参数反应了MOSFET体二极管的反向恢复特性。因为二极管是双极型器件,受到电荷存储的影响,当二极管反向偏置时,PN结储存的电荷必须清除,上述参数正反映了这一特性。
Qg栅极电荷值,也叫栅极总充电电量,反应存储在端子间电容上的电荷,既然开关的瞬间,电容上的电荷随电压的变化而变化,所以设计栅驱动电路时经常要考虑栅电荷的影响。
Qgs为从0电荷开始到[敏感词]个拐点处,Qgd是从[敏感词]个拐点到第二个拐点之间部分(也叫做“米勒”电荷),Qg是从0点到VGS等于一个特定的驱动电压的部分。
漏电流和漏源电压的变化对栅电荷值影响比较小,而且栅电荷不随温度的变化。测试条件是规定好的。栅电荷的曲线图体现在数据表中,包括固定漏电流和变化漏源电压情况下所对应的栅电荷变化曲线。在上图中,平台电压VGS(pl)随着电流的增大增加的比较小(随着电流的降低也会降低)。平台电压也正比于阈值电压,所以不同的阈值电压将会产生不同的平台电压。详解见下图:
是从当栅源电压上升到10%栅驱动电压时到漏电流升到规定电流的90%时所经历的时间。
是从当栅源电压下降到90%栅驱动电压时到漏电流降至规定电流的10%时所经历的时间。这显示电流传输到负载之前所经历的延迟。
上升时间是漏极电流从10%上升到90%所经历的时间。
下降时间是漏极电流从90%下降到10%所经历的时间。
单位为分贝(dB),噪声是由管子内部载流子运动的不规则性所引起的,由于它的存在,可使放大器即便在没有信号输人时,输出端也会出现不规则的电压或电流变化。噪声系数NF数值越小,代表管子所产生的噪声越小,场效应管的噪声系数约为几个分贝,比双极性三极管的要小。
是表示栅源电压VGS对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压VGS变化量的比值,是权衡场效应管放大才能的重要参数。
除以上介绍的参数之外,MOS管还有很多重要的参数,明细如下: