中国·澳门新葡萄新京威尼斯(987-官方网站)-Ultra Platform

/ EN
13922884048

资讯中心

information centre
/
/

零电压开关ZVS电路原理与设计

发布时间:2022-03-17作者来源:澳门新葡萄新京威尼斯987浏览:6587

零电压开关(ZVS)/零电流开关(ZCS)技术,或称软开关技术,小功率软开关电源效率可提高到80%~85%。20世纪70年代谐振开关电源奠定了软开关技术的基础。

基本介绍


PWM开关电源按硬开关模式工作(开/关过程中电压下降/上升和电流上升/下降波形有交叠),因而开关损耗大。高频化虽可以缩小体积重量,但开关损耗却更大了。为此,必须研究开关电压/电流波形不交叠的技术,即所谓零电压开关(ZVS)/零电流开关(ZCS)技术,或称软开关技术,小功率软开关电源效率可提高到80%~85%。20世纪70年代谐振开关电源奠定了软开关技术的基础。随后新的软开关技术不断涌现,如准谐振(20世纪80年代中)全桥移相ZVS-PWM,恒频ZVS-PWM/ZCS-PWM(上世纪80年代末)ZVS-PWM有源嵌位;ZVT-PWM/ZCT-PWM(20世纪90年代初)全桥移相ZV-ZCS-PWM(20世纪90年代中)等。我国已将[敏感词]软开关技术应用于6kW通信电源中,效率达98%。


技术应用


对降压稳压器的关键要求通常是尺寸和效率。由于印制电路板面积弥足珍贵,哪个设计人员也不愿意分配额外的空间给功率设计方案。此外,由于单片机和数字信号处理器(DSP)不断推陈出新,电路板设计方案也不断升级,尽管功率有所增加,但产品尺寸却不能增大了。因此,高密度稳压器便随着[敏感词]IC集成度的提高、MOSFET技术的提升及封装工艺的改良而不断发展。纵使这样,这些稳压器还是无法满足新系统的应用要求。尤其是系统内部的功率密度正日益提高。其主要原因是开关损耗阻碍稳压器MOSFET的内部性能。如果不从根本上解决这些损耗问题,那么只能期望一些微小的性能提升。


选用原因


造成开关损耗的主要原因在于:一是,硬开关。现今,大多数非隔离降压稳压器拓扑的开关损耗都很大。原因是在导通和关断期间,MOSFET同时承受高电流和高电压应力。当开关频率与输入电压增高时,这些损耗同时增大,限制了其可以达到的[敏感词]工作频率、效率和功率密度。二是,栅极驱动损耗。由于栅极驱动电路内的米勒电荷的功耗较高,导至硬开关拓扑结构的栅极驱动损耗也较高。三是,本体二极管传导。当高电平端MOSFET导通和关闭时,高脉动电流通过低电平端MOSFET的本体二极管。本体二极管导通的时间越长,反向恢复损耗和本体二极管传导损耗便愈高。本体二极管传导也会造成破坏性的过冲和振铃。开关损耗还限制了稳压器的开关频率,开关频率越高,MOSFET开关时间就越长,损耗就越大。如果开关不能在高频率切换,将限制更小型无源组件(电阻、电容和电感)的使用,从而使稳压器密度受到影响。众多电子设计师希望在负载点使用零电压开关(ZVS)  。
  针对上述问题,Picor引入了一个高性能、高度集成、软开关降压稳压器平台,可高频工作,大幅度地降低开关损耗,提高效率。


一、零电压开关ZVS应用背景


        零电压开关(Zero Voltage Switch),即开关管关断时,开关管导通时,其两端的电压已经为0。这样开关管的开关损耗可以降到[敏感词]。我们平时使用的电磁炉和LLC电源都是这种谐振电源,普通的充电器等都是硬开关的,比这种谐振电源损耗要大些,所以ZVS可以做到很高效率,例如电磁炉,当我们把功率调到比较大时,为持续加热;当功率调的较小时,就开始断断续续加热,因为那个时候已经不能达到谐振状态了。像我们普通充电器那种硬开关的电源,不管空载和满载都是持续震荡的。但是零电压开关也有一个缺点,就是其调节范围一般都比较窄。


二、零电压开关ZVS原理



        图2-1 零电压开关原理图(直流供能)



        图2-2 零电压开关波形图及其t2时刻波形图


1.上电时L1通入的电流为零,电源通过R1、R2是Q1、Q2导通,L1电流逐渐增加,由于两个开关管特性差异,将导致流入两个开关管的电流不同,假设Q1电流大于Q2电流,所以Q1栅极电压高于Q2栅极电压,通过两个二极管D1、D2,使得a点电压低于c点电压,故T1将产生b为正,a为负的感应电压,于是通过T1形成正反馈,使Q1导通,Q2截止。完成启动过程。


2.(t0~t1时间)稳态Q1导通时,由于上个周期T1电流为a到c,并且C1两端电压为零。由于电流不能突变,T1电流将对C1充电,C1逐渐为a负c正的电压,并且正弦变大,T1电流正弦变小。此时a电压被Q1下拉到0V,所以C点电压正弦变大,Q1栅极电压被D3稳压管钳位,Q1时钟保持导通。



        图2-3 (t0~t1)Q1导通,T1电流对C1充电


4.(t1~t2时间)C1开始通过T1由c到a放电,C1电压即c点电压正弦变小,T1电流由c到a正弦变大。



        图2-4 (t1~t2)C1对T1绕组放电,当C1电压为0左右时,Q1关断,Q2导通


5.(t2时间)当C1能力基本放完时,c点电压下降到MOS管阀值电压左右,将通过D2使Q1进入放大区。此时C1对T1绕组由c到a放电电流达到[敏感词]值。同时由于Q1进入放大区,a点电压逐渐上升,同时通过D1使Q2也进入放大区。


6.(t2时间)C1放电完毕,T1绕组由c到a电流达到[敏感词]值,将像C1充电,使C1充电为a正c负的电压,同时C1两端电压正弦变大。此时两个MOS管同时进入放大区。


7.(右图)由于T1对C1的持续充电,C1上电压为a正c负,通过两个二极管使Q2栅极电压升高,Q1栅极逐渐下降,同时正反馈形成,Q2导通,Q1截止。


8.Q2导通与Q1导通过程类似。

9.L1电感值比T1大,整个震荡周期中L1电流基本不变。震荡过程中L1持续为LC振荡器补充电能。


三、零电压开关(ZVS)计算


1.波形振幅计算

        由波形图可知L1下端b点的波形为正弦波的[敏感词](即为下面降到的Vbm)。由稳态时电感两端电压积分为0,流过电容电流积分为0,可计算出b点电压振幅。


        设b点电压为,电源电压为Vcc,


        则L1两端电压为


        对L1两端电压积分计算得

        由波形图可知b点电压为a到c的电压的一半,所以a、c两端的电压即C1端电压为即为


2.电感电流计算

        知道了电容C1两端的电压,就可以根据电容能量公式和电感能量公式来计算出电感[敏感词]峰值电流为:,其中L为a到c的电感值。


        可见C越大,L越小,通过电感L的电流就越大,大的C和小的L,将导致很大的电流通过电感L,会产生强大磁场,电磁感应加热由此而生。不过通过电感L的电流过大,需要考虑其电阻上面的损耗。同时流过C的[敏感词]电流等于电感[敏感词]电流,选择谐振电容时需要考虑电容的[敏感词]电流参数。


3.计算振荡频率


        该谐振属于LC并联谐振,所以谐振频率为


4.电感L1上交流峰值计算

        L1电感值较大时,流过的电流基本为直流,其电流为补偿振荡所损失的能量。由于b点的振幅已知,就可以计算出L1在一个振荡周期中的交流峰值电流了(其实际峰值电流为直流电流+交流峰值电流)


        Vb电压等于Vcc的时间t:


        于是对电压积分就可以计算出流过L1电流峰值:

        过小的L1会导致其电流峰值很大,导致不必要的损耗。


采用零电压开关ZVS拓扑的100W的PD解决方案

更大的电池容量和更短的充电时间需求,不断提高对于充电器功率的要求。在小尺寸中实现大功率颇具挑战性,人们为此提出了各种各样的创新方案,包括零电压开关ZVS拓扑结构、高性能开关、创新的封装方式以及使用宽禁带材料等,以满足相应设计要求。

如何利用电源开关和新型拓扑结构来实现94%的效率和23W/in3的功率密度。


为了达到更高的功率密度,需要选择合适的拓扑结构、规格尺寸和先进的控制技术。纵观当前的大功率移动充电器市场,存在着多种针对大功率USB-PD充电器的解决方案,包括PFC+QR和PFC+LLC。然而,这些解决方案也存在一定局限性,限制了其得到广泛应用,例如:QR无法实现软开关,LLC拓扑结构难以用于可变输出电压设计。

针对上述情况,英飞凌推出了一种新的非对称半桥混合型反激拓扑结构(如图1)。半桥与串联电容器共同驱动传统的反激变压器。反激变压器的主电感和串联电容器形成谐振回路,用于实现半桥开关的ZVS特性,并在反激变压器的常规退磁阶段提供谐振功率传输。在正常运行期间,充电周期和相关功率通过峰值直流电流控制,而退磁阶段通过定时控制,以确保适当的负预磁化,从而满足半桥开关所需的ZVS条件。


图1:非对称半桥反激拓朴的简化示意图


初级侧的电源电路通过LC谐振回路实现,该回路由类似于LLC转换器的半桥驱动。谐振电感器Lr为串联电感,它既可以是变压器漏感,也可以是变压器漏感加外部电感,而Lm则代表变压器主电感。通过将谐振电容器Cr和变压器的初级线圈连接于正节点和半桥中点之间,也可以实现相同的转换效果。当高侧开关HS导通时,能量将存储于Cr和Lm中,并且各自存储的能量将随输入电压和开关频率而变化(如图2所示)


图片

图2:储能分布和频率变化示意图 


当高侧开关HS断开时,变压器中的电流将迫使半桥中点VHB下降,直至低侧开关的体二极管钳位电压为止。然后,低侧开关将在零电压时导通,与此同时,变压器相位反转,能量转移至次级侧。当低侧开关断开时,上一阶段变压器中感应的负电流将迫使半桥中点VHB升高其电压,直至高侧开关HS的体二极管钳位电压为止,类似于上一个阶段。在ZVS条件下,HS打开,而LS关闭,但变压器谐振回路中的电流仍为负,这意味着谐振回路中的多余能量将被送回输入端。




为什么[敏感词]混合反激拓扑结构?

Infineon


  • 与其他反激拓扑结构相比,混合反激变压器需要存储的能量比较少,因此有助于减小充电器的尺寸

  • 混合反激可以在初级侧实现完全的ZVS,而在次级侧实现完全的ZCS,并且泄漏能量也可以回收,从而提高效率。

  • 如以下公式,输出电压将随占空比变化。对于混合反激式来说,实现宽电压范围的输出要容易得多,由此克服了LLC拓扑结构在宽电压输出应用中的局限性。

Vout:输出电压

D:占空比

Vin:输入电压

Lm:变压器电感

N:变压器匝数比

Lr:变压器漏感



英飞凌的100W USB-PD参考设计

Infineon


完整的解决方案如图3所示。PFC级采用临界导通模式IRS2505和ThinPAK封装IPL60R185C7 CoolMOS™,而DC-DC级则采用数字PWM控制器XDPS2201和IPLK60R360PFD7。同时,BSC028N06NS用作同步整流开关(将来可以换成专门针对充电器同步整流用的低压ISZ0702NLS以进一步提升性价比),协议控制器为CYPD3174,而p-channel MOS  BSZ086N03NS3用作输出安全开关。

图片

图3:100W USB-PD解决方案框图


通过这种设置,效率峰值可以达到94%,并且待机功耗低于60mW。



图4:效率和待机功耗曲线




[敏感词]效率:

选择适当的高压MOSFET至关重要

Infineon


软开关技术使器件能够在ZVS下运行,即MOSFET仅在其漏源电压达到0V(或接近于0V)后才导通。这种策略可以消除器件的导通损耗,而导通损耗通常是造成总开关损耗的主要因素。遗憾的是,由于输出电容的“非无损”特性,所有高压SJ MOSFET都会遭受另外一种损耗,即在MOSFET输出电容(Coss)先充电后放电时,都会有部分能量损失。因此,即使在ZVS条件下运行,也无法回收存储于输出电容中的全部能量(Eoss)。这种现象与Coss的滞回特性有关,在执行Coss充电/放电周期时可以借助较大的信号测量观察到这种现象。正因如此,此类损耗通常被称为Coss滞回损耗(Eoss,hys)。

图片

图5:SJ MOSFET的Qoss充电/放电周期


得益于英飞凌先进的SJ技术,CoolMOS™ PFD7系列进一步降低了滞回损耗,从而有助于进一步提高效率。  



 结论 


基于数字XDPS2201的ZVS混合反激式,可以在不同的输入电压和输出电流条件下实现ZVS和ZCS。此外,它还可以回收变压器漏感的能量。高性能的功率MOSFET有助于在60mm x 40mm x 18mm尺寸的100W USB-PD设计实现高达94%的效率。




免责声明:本文转载自“大印蓝海科技”,支持保护知识产权,转载请注明原出处及作者,如有侵权请联系我们删除。


服务热线

0755-83044319

霍尔元件咨询

肖特基二极管咨询

TVS/ESD咨询

获取产品资料

客服微信

微信服务号